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1 Description of the effort

The objective of our effort was

to develop mathematical algorithms and high fidelity software tools which would allow
identification and understanding of relevant bioacoustic and psychoacoustic mecha-
nisms responsible for the transmission of acoustic energy through non-airborne path-
ways to the cochlea and,

to apply these tools to significantly reduce the cost of subsequent experiments.

2 Main results

In the following subsections we summarize the main results of the development of math-
ematical algorithms and a high fidelity numerical solver to serve as a simulation tool for
investigating such effects as, e.g., acoustic energy transfer to the inner ear via non-airborne
pathways. The detailed description of the work performed is provided in the Attachments.

The solver is based on a modified form of the volumetric Lippmann-Schwinger integral
equation, adapted to the treatment of high-contrast problems. It utilizes a stiffness matrix
compression technique based on Fast Fourier Transform (FFT), and has been implemented
on parallel distributed-memory systems. As a result, it allows simulations involving realistic
geometries characterized by highly sub-wavelength details and large density contrasts, and
described in terms of several million unknowns.

2.1 Development of integral-equation formulations and design of the solver
for elasticity (Attachments 1 and 2)

Volumetric integral equations. We developed two formulations of volumetric integral
equations in elasticity. The constructed versions are derived from the differential Lamé
equation in either its first- or second-order form; this fact constitutes the rationale for
considering two alternative types of equations: The first-order differential equations give rise
to integral equations with more unknown functions and fewer (or lower order) derivatives of
the functions themselves and the spatially dependent material parameters; whereas the more
customary second-order equations result in integral equations for fewer unknown functions,
but with higher-order derivatives.

Now, the presence or absence of gradients of material parameters in the equations is
of critical importance in problems involving large-contrast discontinuities in the material
properties, which, in our applications, always occur at the interface of the biological tissue
with the surrounding air. We expect that, by using a formulation with fewer derivatives, we
should be able to better control such gradient contributions in the equations. Nevertheless,
both types of equations required extensive rearrangements, analogous to the reformulation
of the conventional Lippmann-Schwinger (L-S) equations which we developed in the case
of acoustics (Reference 2 in Section 6). By following analogous procedures in the present
context of elasticity, we also arrived at the forms of equations allowing separation of the
surface-type contributions of material discontinuities – a prerequisite for application of
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the approach pursued in the above publication. The decision on which of the alternative
formulations is better suited to our purposes will have to be based on further numerical
experiments with the solver.

Surface integral equations. We also developed an integral-equation formulation (in-
cluding the discretization procedure) of surface integral equations. Such a formulation
is applicable to geometries composed of regions of piecewise homogeneous materials, and
provides solutions for the displacement and traction fields u and t, defined on interfaces
separating different material regions. This type of formulation and its implementation plays
several roles:

(a) It constitutes a very precise cross-verification tool for the developed volumetric integral-
equation solver.

(b) It is more efficient than the volumetric formulation in modeling protective devices
(e.g., such as helmets) of possibly complex geometries, but consisting of regions of
homogeneous materials.

(c) It is useful in modeling fine details of the middle and inner human ear. These parts of
the model include a number of intricately shaped volumetric regions filled with various
homogeneous materials, and embedded in a larger volume of an inhomogeneous tissue.
Those small regions can be then described in terms of displacement and traction fields
defined only on their surfaces, thus eliminating the need of volumetric discretization,
while inhomogeneous region is treated by means of a volumetric integral equation.
We expect this approach to offer more flexibility and a better accuracy in modeling
small complex geometries.

For a general problem involving a set of homogeneous regions Ωm separated by interfaces, the
obtained system of integral equations (derived by the direct method from the representation
theorems for the displacement field) consists of two equations per interface Smn separating
the regions Ωm and Ωn. These equations represents contributions to the displacement field
u on the interface Smn due to the displacement and traction fields u and t on the same
interface and on other interfaces, say Sim, forming boundaries of the regions Ωm and Ωm

with other regions Ωi, i �= m, i �= n.
The equations involve the Green functions for the displacement and traction fields in

the considered material regions. In our formulation of the surface integral equations we are
using a convenient form of the Green function G(r) for the displacement field, explicitly
incorporating cancellation of singularities of the Green functions gC(r) and gS(r) describ-
ing, respectively, propagation of compressional and shear waves. The above representation
ensures that the tensorial component of the Green function is regular for r → 0, while,
without the cancellation, it would have contained a ∼ 1/r3 singularity. The reduced degree
of singularity is particularly important in the discretization of the equations. Attachment
1 includes a discussion of this problem and contains explicit expressions for the relevant
matrix elements.
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Coupling of volume and surface solutions. In view of the application (c) mentioned
in the previous paragraph, we also developed a novel formulation which allows coupling of
the surface unknowns with the volumetric unknowns associated with the inhomogeneous
medium.

An example of a system involving both volumetric and surface fields is visualized in
Fig. 1: surface fields u and t are supported on the boundary ∂Ωm of a homogeneous
region Ωm embedded in an inhomogeneous region Ω, supporting volumetric fields (here the
displacement field u). This configuration gives rise to three equations:
1. A volumetric equation in which the displacement u(r) at an observation point r ∈ Ω
is expressed in terms of the volumetric displacement u(r′) at a source point r′ ∈ Ω and in
terms of the surface fields u(r′) and t(r′) at a source point r′ ∈ ∂Ωm.
2. A set of two surface equations for the fields u(r) and t(r) at r ∈ ∂Ωm, also expressed in
terms of the volumetric field u(r′) and surface fields u(r′) and t(r′).

Figure 1: A schematic representation of a system of coupled integral equations for volumetric
and surface displacement and traction fields. The broken lines without an index and with
the index m represent, respectively, the Green functions in the background medium and in
the homogeneous region Ωm.

Analytical formulation for computation of matrix elements. We derived explicit
expressions for the many types of Galerkin matrix elements arising in the developed for-
mulations of surface and volumetric elasto-acoustic integral equations. These formulations
involve scalar, vectorial, and tensorial unknowns, as well as first and second derivatives of
the Green functions. As a result of application of integral identities involving integration
by parts, we were, generally, able to reduce the dimensionalities of the integrals and reduce
the degree of their singularities. The details are contained in Attachment 2.

Implementation. We designed the general structure of the solver code for elasticity
(which also includes acoustics, as a special case). It comprises an extensible library of rela-
tively simple routines for constructing particular blocks and sets of matrix elements, as well
as their compressed representations, appearing in various integral-equation formulations.
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These routines create input data used by a general routine whose task is to assemble the
entire matrix and store it in a compressed form.

We have implemented a part of this scheme, corresponding to acoustic volumetric equa-
tions in first- and second-order formulations.

2.2 Construction of analytic solutions for a layered elastic sphere (At-
tachment 3)

We constructed a program evaluating the analytic series solution for a layered elastic sphere.
It provides a complete distribution of the displacement and other related fields inside a
multi-layer sphere consisting of an arbitrary number of layers, each characterized by any
desired value of density ρ and the Lamé parameters λ and μ. The sphere is embedded in
an infinite acoustic medium (e.g., air) and subject to an acoustic plane wave propagating
in that medium.

We have used the series solution code to check the accuracy of our volumetric integral
equation solver in a number of representative cases, including layers of materials encountered
in modeling of a human head and a helmet, such as steel, cork, skin, fat, muscle, brain tissue
and bone.

The code has also played a very instrumental role in the verification of the Finite Element
Method solver for elasticity developed by the University of Texas team members.

2.3 Parallelization of the integral-equation solver (Attachment 4)

We significantly improved the previous version of our distributed-memory acoustic solver.
The main modifications were related to the FFT matrix compression scheme, and their
purpose was to reduce the memory requirements of the code. This goal was achieved by
improving the structure of the data layout and the order of operations, without any deteri-
oration of the compression accuracy. The two main implemented improvements, described
in more detail in the Attachment, were:
(i) Reorganizing the procedure of computation of coefficients (denoted by V ) mapping the
physical pressure sources to equivalent sources defined on a Cartesian grid (and subsequently
used by Fast Fourier Transforms). Most of these coefficients are now computed on-the-fly,
and do not require any storage.
(ii) Storing the V coefficients as a sparse matrix, in which each processor computes and
saves only the coefficients associated with the Cartesian grid nodes owned by that processor.
The first of these changes eliminated a temporary increase of the storage during matrix
construction. The second reduced the size of the compressed stiffness matrix in its final
form. The overall effect of these improvements depends on the number of Cartesian grid
nodes per processor, and is most significant when the Cartesian grid covering the object is
partitioned into thin “slices” assigned to the processors. For such problems as reported in
the Attachment 4, the maximum memory per processor decreased, due to changes in the
code, by at least 30% and, in many cases, by significantly more. This reduction eliminated
the need of requesting more storage than the default amount (1.75 GB per processor) and
thus significantly facilitated the computations.
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We also developed and implemented in the solver an enhanced version of our two-stage
algorithm for problems involving large density contrasts. The modified version uses an
alternative discretization procedure in the first solution step (i.e., in the surface problem).
It was found to accelerate convergence and increase the size of tractable geometrically
complex large-contrast problems up to eight million unknowns.

2.4 Construction of head geometry with a detailed ear structure (Attach-
ment 5)

Geometry of the middle and inner ear constitutes a highly intricate structure. We realize
that precise modeling of those elements is essential for reliable numerical simulation which
could discern between different mechanisms of energy transfer to the human ear.

Therefore, apart from attempting to construct an efficient mathematical formulation, a
significant fraction of our effort was devoted to the construction of a sufficiently detailed
and anatomically faithful model of the ear (its outer, middle, and inner parts).

We have built a rather detailed model, including what we thought were the essential
geometry elements in simulating energy transfer processes. The geometry consists of:

1. the outer ear represented by its exterior surface, the surface of the auditory canal,
and including the tympanic membrane, modeled as a finite-thickness surface;

2. the middle ear, consisting of the system of ossicles and supporting structures;

3. the skull, described by the surface of the bone, and including

4. the inner ear, modeled as a set of surfaces representing the boundaries of the cochlea,
the vestibule, and the semi-circular canals; and

5. the outer surface of the skin surrounding the skull.

For tests of noise-protection devices, we also constructed a model of a helmet and the
material layer filling the space between the helmet and the surface of the head.

We stress that all the geometry components: skull, skin, inner, middle, and outer ear,
as well as the helmet, are mutually compatible and matched to one another. This fact is
illustrated by the example in Fig. 2, which shows the outer and inner ear together with a
part of the skull. Other representative examples of the geometry details are presented in
Attachment 5.

We note that our work on the geometry construction is not fully completed. We continue
our work in this area and should be in a position to start computations employing this
detailed model within two to three months.
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Figure 2: The outer ear and the inner ear structure embedded in the skull bone.

2.5 Numerical simulations (Attachment 4)

We carried out an extensive set of numerical simulations of pressure distribution in the
human head models, including also models of helmets. We used both realistically shaped
models of the head and helmets, as well as simplified geometries (such as layered spheres
and spherical shells) to perform code verification against the analytical series solutions.

The problems involved up to about 10 million unknowns, and were solved on up to 200
processors.

In particular, our solver has been applied to a number of representative problems in-
volving a model of a human head enclosed in a helmet, with the in-between space filled
with an elastic material. The head and helmet geometries were also used in thorough tests
of the accuracy of the matrix compression used in the solver; the tests, described in Attach-
ment 4, involved comparison of solutions obtained with various geometry discretizations
and compression parameters.

Some results of these simulations were reported in a paper presented at the 2009
MEMRO conference at Stanford University (Attachment 7) and accepted for publication in
Hearing Research.

As one of the tests, we compared pressure distributions in the head model, computed
with a coarser (N � 400, 000 unknowns) and a finer (N � 2, 700, 000) discretization. The
results, shown in Fig. 3, demonstrate a good agreement between the results obtained in
these two cases.
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(a) (b)

Figure 3: Distributions of the real part of the pressure, plotted in the logarithmic scale, on
several sections in the axial plane of the human head model with (a) a coarser discretization
(N � 400, 000 tetrahedra), and (b) a finer discretization (N � 2, 700, 000 tetrahedra). The
models are subject to an acoustic wave of unit pressure amplitude and frequency 5 kHz,
incident horizontally on the right ear. In (b) the outline of the head outer surface is
superimposed on the pressure distributions.

As another example, we compared pressure distributions in the isolated head model and
in the same model with an addition of a steel helmet separated from the head by a layer of
cork. The geometry of the head and the helmet is shown in Fig. 4; the surface of the head
belongs, actually, to the set of the matching geometry elements described in Sec. 2.4 above
and in Attachment 5.
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Figure 4: The matched models of the head skin surface and the helmet.

The head and head+cork+helmet geometries were discretized, respectively, with N �
2, 700, 000 and N � 4, 700, 000 tetrahedra, and the solutions were computed on 108 and 128
processors. The results of the computations are visualized, as distributions of the absolute
value of the pressure in the coronal plane of the models, in Fig. 5. The solutions show a
nontrivial behavior and exhibit physical phenomena which may be relevant in the design of
protective devices:

- In the first case (Fig. 5(i)) the pressure is maximal at the entrance to the ear canal, and
it is smoothly distributed inside the head. The solution for the pressure is, actually,
suggestive of a resonance-type (P-wave) behavior, as the pressure changes sign along
the approximately vertical line seen in the Figure.

- The solution for the head and helmet system (Fig. 5(ii)) is very different. It exhibits
a distinct oscillatory behavior along the surface of the helmet and in the region filled
by cork. This region appears to have properties of a “waveguide”: because of the cork
density being significantly lower than that of the surrounding materials (the helmet
and the head), and the resulting impedance mismatch at the boundaries, the wave
tends to be trapped in that area.

We also note that, although the presence of the helmet with a cork lining completely changes
the pressure distribution inside the head, it does not reduce its maximum value (the data
Figs. 5(i) and 5(ii) are rendered in different scales). It can be expected, however, that
the physical picture of wave propagation should strongly depend on the properties of the
layer filling the head-helmet gap, and could be quite different for a dissipative and strongly
damping (e.g., porous) material.
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(i) (ii)

Figure 5: Pressure distributions in the coronal plane for (i) the human head model and (ii)
the system consisting of the human head and a steel helmet models, with the in-between
space filled by cork. The numbers of unknowns in these two problems are N � 2, 700, 00
and N � 4, 700, 00. The maximum pressure values are about 4 in (i) and 15 in (ii).

2.6 The University of Texas team contribution – Finite Element analysis
(Attachment 6)

The University of Texas team contribution focused on the Finite Element Method (FEM)
solver for elasticity.

Members of the team have enhanced their Finite Element Code to include simultaneously
tetrahedral, hexahedral, pyramidal, and prism elements. They also developed a schematic
geometrical model of the middle ear, which is, however, expected to capture essential physi-
cal mechanisms of energy transfer. This model has been used in simulations with the Finite
Element code. The details of these developments are described in the Attachment.

3 Benefits and technical feasibility of the developed approach

The integral-equation approach to solution of large elasto-acoustic problems, pursued in
this project, offers valuable and unique advantages. The most important of these are:

High accuracy characteristic of the integral-equation approach.

Applicability to problems involving high-density objects immersed in air, with an exact
treatment of the infinite background medium, and with special methods for accurate
description of wave penetration through the high-contrast air-tissue interface.

Applicability to large problems involving tens of millions of unknowns, and including
fine, sub-millimeter scale, geometrical details.
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An efficient numerical implementation involving non-lossy compression of the stiffness
matrix and distributed-memory parallelization. The developed code exhibits an ap-
proximately linear scaling of the computational cost with the number of unknowns,
and almost perfect speedup with the number of processors.

When completed, the developed code should significantly broaden the scope and improve
accuracy of realistic biomedical and safety-related application, of particular importance
being analysis of effects of noise on human subjects, and assessment and design of noise
protection devices. Such simulations are, at present, limited because of prohibitive mem-
ory and computational requirements as well as insufficient accuracy of currently available
approaches.

4 List of attachments

Detailed technical descriptions of the developments summarized in Section 2 are contained
in the Attachments listed below.

Attachment 1 gives extensive details of the integral-equation formulations developed in
this effort, including several forms of surface and volume integral equations, treatment
of high-contrast problems, and explicit formulae for the resulting matrix elements. It
also describes the general design of the solver code.

Attachment 2 presents details of a representation of the matrix elements appearing in
our integral-equation formulations, well suited (through reductions in integral dimen-
sionalities and degrees of their singularities) for numerical computation.

Attachment 3 includes the formulation and implementation of the exact series solu-
tion for multi-layer sphere characterized by arbitrary elastic properties of the layers,
subject to a plane-wave incident acoustic field.

Attachment 4 describes the implemented parallel version of our acoustic solver, and
includes illustrative examples of large-scale computations, serving also as tests of the
accuracy of the solutions. The implementation described there includes improvements
(relative to the previous code version), allowing a significant reduction in the required
storage. Part of the material in this Attachment constitutes a paper being prepared
for publication.

Attachment 5 includes representative examples of details of the constructed inner ear
geometry.

Attachment 6 contains contribution of the University of Texas at Austin team.

Attachment 7 contains the paper presented at the MEMRO 2009 conference and
accepted for publication in Hearing Research.
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